Abstract | The identification of anabolic agents for the treatment of metabolic bone disease is a highly prized, and elusive, goal. In searching for the osteogenic (bone-producing) constituents within mechanical stimuli, it was determined that high frequency (10-100 Hz) and low magnitude (<10 microstrain) stimuli were capable of augmenting bone mass and morphology, thereby benefiting both bone quantity and quality. Using animal models, it is shown that these mechanical signals can double bone-formation rates, inhibit disuse osteoporosis and increase the strength of trabecular bone by 25%. Considering that the magnitude of these mechanical signals are several orders of magnitude below those which cause damage to the bone tissue, it is proposed that this modality could be useful in the treatment of metabolic bone diseases. |